

PN: 505-000683-01 Rev. 1

Introduction

The Synaptics[®] S7880 touch controller is a high performance TouchPad controller with up to 43 sensing channels for use in touchscreens up to 7 inches in diagonal with a 16:10 aspect ratio and a sensor pitch of 6 mm. The maximum number of nodes is 442 (for example, a 26 RX x 17 TX configuration). The S7880 is recommended for use in automotive applications.

General description

The S7880 supports self-capacitance, mutual-capacitance, and hybrid sensing with up to 10-finger detection. Fast report rates (up to 100 Hz) and flexible sensing frequency from 50 to 500 kHz are also supported.

The S7880 provides high performance hardware filtering for noise mitigation, moisture detection, and severe common mode noise rejection. The device also offers high performance charge pump, patented Synaptics SignalClarity™ driving schemes, and advanced firmware algorithms.

Features and benefits

- ISO-TS16949 compliant
- AEC-Q100 qualification to Automotive Grade 2 (-40°C to 105°C) (completion Q1/2017)
- Production Part Approval Process (PPAP) documentation (completion Q1/2017)
- 64TQFP package (10 mm x 10 mm x 1.0 mm)
- Glove detection
- Moisture mitigation
- Thick lens support (4 mm at a dielectric constant of 8)
- Curved lens designs with maximum thickness same as thick lens support with any minimum thickness
- Power modes:
 - Touch active
 - Normal operation
 - Sensor sleep

- Serial interfaces:
 - I²C (100/400 kHz)
 - o SPI slave
- Power supply schemes:
 - 2.7V to 3.6V supply voltage
 - Internal charge pump for increased TX voltage up to 6.6V
- Best-in-class capacitance sensing:
 - Up to 10-finger detection and simultaneous tracking
 - Optimum SNR performance: on-chip charge pump with SignalClarity
- In-system reprogrammability (reflash) support
- Internal power-on reset detector
- Hardware filtering for noise mitigation
- Supports configurable frequency shifting
- Supports advanced sensor/display architecture including:
 - Touch controller on sensor FPC tail
 - Touch controller on main board
- On-Cell sensor designs
- Built-in self test (BIST) feature
- Self-calibrating no host side calibration needed
- Fully compatible with Synaptics Design Studio[™] 5 tool chain for production-ready touch sensing development

Contents

Introduction	1	
General description	1	
Architecture	3	
Transmitter and receiver configurations	7	
Power supply configuration	10	
Host interface	11	
Attention signal	11	
I ² C interfacing	11	
Connection	11	
Clock stretching	12	
In-system reprogrammability	12	
Configuration	13	
User interface firmware	13	
Bootloader configuration	13	
Bootloader	13	
Electrical specifications	14	
Absolute maximum ratings	14	11.
Device level specifications	15	'n:
Reliability characteristics	16	· ·/h_
GPIO characteristics	16	'dh
Push-pull GPIO characteristics	16	J
Open drain GPIO characteristics	17	
Power management	17	
Timing characteristics	18	
l²C	18	
Power-on sequence and initialization	19	
Power supply sequencing	20	
Power-on interface timing	21	
External reset timing	22	
Package and ordering information	23	
Package drawing	23	
Dimensions	24	
Package marking	25	
Ordering information	25	
Shipment packaging	26	
Environmental and regulatory compliance	26	
Reference documents	26	
Revision history	27	
Contact us	27	

Architecture

The S7880 is a fully self-contained, ready-to-use, capacitance-sensing system on a chip (SoC). Synaptics proprietary microcontroller and firmware handle all calibration, capacitance-sensing, computation of finger position, and gesture reporting.

Figure 1. S7880 block diagram

Pin assignments

Figure 2. S7880 pin assignments (top view)

Copyright © 2016 Synaptics Incorporated. All Rights Reserved. Synaptics Confidential. Disclosed Only Under NDA.

Pin definitions

Table 1. S7880 pin definitions

Pin Location	Signal	Туре	Description		
1	TRX42	I/O	Transmitter or receiver electrode, E Bank, configurable in bank grouping.		
2	TRX41	I/O	Transmitter or receiver electrode, D Bank, configurable in bank grouping.		
3	TRX40	I/O	Transmitter or receiver electrode, D Bank, configurable in bank grouping.		
4	TRX39	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
5	TRX38	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
6	TRX37	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
7	TRX36	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
8	TRX35	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
9	TRX34	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
10	TRX33	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
11	TRX32	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
12	TRX31	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
13	TRX30	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
14	TRX29	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
15	TRX28	I/O	Transmitter or receiver electrode, C Bank, configurable in bank grouping.		
16	TRX27	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
17	TRX26	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
18	TRX25	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
19	TRX24	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
20	TRX23	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
21	TRX22	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
22	TRX21	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
23	GNDRX	I/O	Filtered analog ground.		
24	VDDRX	Filter Pin	Filtered from VDDH analog power.		
25	VDDA	Filter Pin	Filtered from VDDH charge integrator's power.		
26	VDDH	Power	3V analog power input.		
27	TRX20	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
28	TRX19	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
29	TRX18	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		
30	TRX17	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.		

Table 1. S7880 pin definitions (Continued)

Pin Location	Signal	Туре	Description
31	TRX16	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.
32	TRX15	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.
33	TRX14	I/O	Transmitter or receiver electrode, B Bank, configurable in bank grouping.
34	TRX13	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
35	TRX12	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
36	TRX11	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
37	TRX10	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
38	TRX9	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
39	TRX8	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
40	TRX7	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
41	TRX6	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
42	TRX5	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
43	TRX4	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
44	TRX3	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
45	TRX2	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
46	TRX1	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
47	TRX0	I/O	Transmitter or receiver electrode, A Bank, configurable in bank grouping.
48	LDO18EN	I	Connect to VDDH.
49	VDDCP/ VDDCPRT	Power	Power input to the charge pump bypass switch or output of charge pump.
50	VDDH	Power	3V analog power input.
51	VDD18	Power	Output of internal 1.8V LDO.
52	GND	Ground	Package analog ground
53	VDDBUS	Power	Connect to VDDH. Power supply for all GPIO pins.
54	XRESB	I	Dedicated active low reset pin; has internal pull-up to VDDBUS.
55	PA1	GPIO	Spare GPIO.
56	PA2	GPIO	Spare GPIO.
57	PA3	GPIO	Spare GPIO.
58	PA4	GPIO	Spare GPIO.
59	PA5/ATTN	GPIO	I ² C ATTN interrupt.
60	PA8/SDA	GPIO	I ² C data (SDA); true open drain I/O.

Copyright © 2016 Synaptics Incorporated. All Rights Reserved. Synaptics Confidential. Disclosed Only Under NDA.

Table 1.	S7880	pin definitions	(Continued)
----------	-------	-----------------	------------	---

Pin Location	Signal	Туре	Description
61	PA9/SCL	GPIO	I ² C clock (SCL); true open drain I/O.
62	VDD12	Power	Output of internal 1.2V LDO.
63	VDD12LDO	Power	Connect to VDD18 (pin 51).
64	LDO12EN	I	Connect to VDD18 (pin 51).

Note: Back pad must be connected to GND.

Transmitter and receiver configurations

Table 2. S7880 transmitter and receiver bank options

Bank	TRX	Number of TRX
A0	TRX0 to TRX11	12
A1	TRX12 to TRX13	2
В0	TRX14 to TRX25	12
B1	TRX26 to TRX27	2
С	TRX28 to TRX39	12
D	TRX40 to TRX41	2
E	TRX42	1

Configuration pin options

Table 3. S7880 axis setting options

Pank	Axis S	etting		
Ballk	0x33	0x0C		
A0	12R	12T		
A1	2R	2Т		
B0	12T	12R		
B1	2Т	2R		
С	12R	12T		
D	2R	2Т		
E	1T	1T		
Total	28R; 15T	14R; 29T		

reliminary

Sample schematic

- Note: Place capacitors as close to power supply pins as possible.
- Note: Both VDDH pins are externally connected.

Power supply configuration

The S7880 is designed for a single external power supply rail. Table 4 provides the possible configuration. For details on sensor/FPCA design and routing guidelines, refer to the *ClearPad Sensor Design Guidelines* (PN: 511-000384-01).

Table 4. S7880 power supply configuration

VDD12	VDD18	VDDH	VDDBUS	LDO12EN	LDO18EN	Description
Internal	Internal	External	Connect to VDDH	Connect to VDD18	Connect to VDDH	External VDDBUS and VDDH Internal 1.8V, 1.2V

Note: The VDDBUS shares an external power supply with VDDH. VDDBUS must follow the VDDH power specification in Table 6.

Preliminary

Host interface

The S7880 is available with an I²C host interface. The host communicates with the S7880 by reading and writing 8-bit data registers. Full details of Synaptics interface protocols can be found in the *Synaptics RMI4 Specification* (PN: 511-000405-01).

Attention signal

In addition to standard I²C signals, the S7880 provides an *attention* output (ATTN) that is asserted to indicate that new data is available for reading by the host. The ATTN signal is intended to be used as an interrupt source to a host processor. ATTN functionality is added by user interface firmware so pin allocation, polarity and drive options (open-drain or push-pull) are defined at the time of firmware build. Operation of the ATTN signal is shown in Figure 4.

I²C interfacing

Connection

Figure 5 shows an example of host connection using the S7880 I²C interface. The values of the pull-up resistors should be chosen to ensure that the rise times of the SDA and SCL signals are within the limits set by the I²C specification. This depends on what other slave devices, if any, are on the I²C bus but typically would fall within the range of 2.2 k Ω –10 k Ω .

Figure 4. Attention line behavior (I²C interface shown)

Note: The attention line is also de-asserted when the host disables interrupts.

Figure 5. Typical connection of the touch controller to the host

Copyright © 2016 Synaptics Incorporated. All Rights Reserved. Synaptics Confidential. Disclosed Only Under NDA.

Clock stretching

Special attention should be paid to clock stretching when interfacing with a Synaptics touch controller over

I²C. The host processor must support clock stretching. The first byte of a transaction contains the slave address and read/write bit. At the end of the first byte, the touch controller holds SCL low (clock stretches) and checks that the slave address matches its own. If

Note: Typical clock stretch time (Tcstr) is less than 25 ms.

the slave address does not match, the S7880 will not stretch the clock on subsequent byte transmissions until it detects the next start condition. If the slave address does match, the touch controller acknowledges and may stretch the clock after some or all of the subsequent bytes within the same transaction (Figure 6).

In-system reprogrammability

The S7880 includes firmware in order to support finger tracking and position reporting. This firmware is stored in non-volatile (flash) memory on-chip and may be updated at any time over the host interface. This capability allows freedom and flexibility when operating with Synaptics devices; simply choose the firmware

image that is applicable to your design. Figure 7 illustrates the firmware storage methodology.

Note: Reference code is available from Synaptics that implements the steps for reprogramming the configuration and user interface firmware space.

Figure 7. Firmware structure

Configuration

The configuration space stores the default values of the device's control registers. The bootloader provides a mechanism to erase and reprogram this space. Because an existing configuration may not be valid for a new firmware revision, any update to the user interface firmware should be followed by an update of the configuration space.

User interface firmware

The user interface firmware space contains the firmware that implements the primary function of the device.

User interface firmware images are provided by Synaptics in an encrypted form to ensure they can only be executed on an appropriate device. It is not possible to erase the user interface firmware space without also erasing the configuration space.

Bootloader configuration

This can be set by a one-time lockdown process when adding user interface firmware for the first time. This permits the same S7880 parts to be deployed in different hosts systems where required bootloader configuration may be different for each.

Bootloader

This is pre-programmed and cannot be changed. The bootloader:

- checks the integrity of the user interface firmware space
- provides the ability to re-flash a new user interface or configuration area.

Preliminary

Electrical specifications

Absolute maximum ratings

Table 5. S7880 absolute maximum ratings

Parameter	Minimum	Maximum	Unit
Voltage on any GPIO pin	-0.3	3.6	V
VDDBUS	-0.3	3.6	V
VDD12	-0.3	1.32	V
VDD18	-0.3	1.98	V
VDDH/VDDHCP	-0.3	3.6	V
Input current at any pin	—	100	mA
Package input current	—	200	mA
Operating temperature	-40	105	°C
Storage temperature, unbiased	-55	125	°C
Lead soldering temperature (10 seconds)	_	260	°C

- **Note:** When the input voltage at any pin exceeds the associated power supply, the current at that pin should be limited to 100 mA. The 200 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 100 mA to two pins. The maximum time this condition can be applied is approximately 10 seconds.
- **Note:** Stresses beyond those listed in Table 5 may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: The absolute maximum junction temperature (Tjmax) for this device is 150 °C.
- Note: VDDBUS should not be higher than VDDH.

Device level specifications

Table 6. S7880 DC characteristics

Parameter	Symbol	Comments	Minimum	Typical	Maximum	Unit
Analog supply input 1	VDDH	—	2.7	3.3	3.6	V
Analog filter pin 1	VDDRX	Internally filtered power	2.6	_	3.6	V
Analog filter pin 2	VDDA	Internally filtered power	2.6	—	3.6	V
Digital core supply	VDD12	—	1.14	1.2	1.32	V
Analog supply input 2	VDD18	—	1.71	1.8	1.98	V
Internal 1.2V LDO supply input	VDD12LDO	Connect to VDD18	1.62	1.8	1.98	V
Internal 1.8 LDO supply input	VDD18LDO	Connect to VDDH	2.7	_	3.6	V
GPIO power supply	VDDBUS	Shared with VDDH	VDDH	—	VDDH	V
Analog supply input for charge pump and LDO	VDDHCP	Connect to VDDH	2.7	3.3	3.6	V
Charge pump output	VDDCP	Typically 2x VDDH	5.4	—	7.2	V
Power supply ripple	—	elitu.	_	_	100	mV (peak-to-peak)
	5					·

Table 7. S7880 capacitance characteristics

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Unit
Mutual capacitance	CT	Mutual capacitance per node	_	1.5	—	pF
Mutual capacitance resolution	C_{TR}	—	—	2.2	—	fF
Column self capacitance	CB	Self capacitance per channel	—	60	—	pF
Row self capacitance	CB	Self capacitance per channel	—	60	—	pF
Self capacitance resolution	C _{BR}	—	—	14	—	fF

Note: The values listed are typical capacitance values for sensors.

Reliability characteristics

Table 8. S7880 reliability characteristics

Symbol	Parameter	Minimum	Maximum	Unit	Reference Test Method
FLASH _{DR}	Flash data retention	10	_	Years	Accelerated test
FLASH _{ENPB}	Flash write endurance	1,000	_	Erase/Write Cycles	_
V _{ZAPHBM} ⁽¹⁾	ESD susceptibility HBM	_	± 2	kV	Class 2 (AEC Q100-002/JEDEC JS-001)
V _{ZAPCDM} ⁽¹⁾	ESD susceptibility CDM	_	± 750 corner pins ± 500 rest of pins	V	Class C4B (AEC Q100-011)

Note 1: This parameter is tested initially during characterization and after a design or process change that affects the parameter.

GPIO characteristics

Push-pull GPIO characteristics

GPI Push _{Table}	O chara 1-pull GPI 9. S7880 pu	cteristics O characteristics	ristics	elim	nan.			
Mode	Function	Condition	Input Low Level Voltage (V _{IL}) Maximum (V)	Input High Level Voltage (V _{IH}) Minimum (V)	Input Hysteresis (V _{HYS}) Typical (mV)	Input Capacitance (C _{IN}) Maximum (pF)	Output Voltage Low (V _{OL}) Maximum (V)	Output Voltage High (V _{OH}) Minimum (V)
0	I ² C standard or fast-mode	3.6V ≥ VDDBUS > 2.7V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	NA
1	I ² C standard or fast-mode	2.7V ≥ VDDBUS > 1.98V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	NA
2	I ² C standard or fast-mode	1.98V ≥ VDDBUS > 1.65V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.2 x VDDBUS	NA
3	GPIO	3.6V ≥ VDDBUS > 1.65V @ 1 MHz IOL = IOH = 20 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	VDDBUS – 0.4
6	SPI	3.6V ≥ VDDBUS > 1.65V @ 10 MHz maximum IOL = IOH = 10 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	VDDBUS – 0.4
6	GPIO	3.6V ≥ VDDBUS > 1.65V IOL = IOH = 10 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	VDDBUS – 0.4
7	Test	3.6V >= VDDBUS > 2.7V IOL = IOH = 30 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4	VDDBUS – 0.4

Open drain GPIO characteristics

Table 10.	S7880 ol	oen drain	GPIO	characteristics

Mode	Function	Condition	Input Low Level Voltage (V _{IL}) Maximum (V)	Input High Level Voltage (V _{IH}) Minimum (V)	Input Hysteresis (V _{HYS}) Typical (mV)	Input Capacitance (C _{IN}) Maximum (pF)	Output Voltage Low (V _{OL}) Maximum (V)
0	I ² C standard or fast-mode	3.6V ≥ VDDBUS > 2.7V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4
1	I ² C standard or fast-mode	2.7V ≥ VDDBUS > 1.98V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.4
2	I ² C standard or fast-mode	1.98V ≥ VDDBUS > 1.65V IOL = 3 mA	0.3 x VDDBUS	0.7 x VDDBUS	0.05 x VDDBUS	10	0.2 x VDDBUS

Power management

The overall power supply current is a function of the operating power supplies, sleep mode, and product configuration, which can vary significantly. Synaptics measures power supply current as an average current on the power supply pins.

Table 11. S7880 nominal power supply current

Operating Mode	VDDH Current (mA) at 3.0V	Total Power (mW)
Sensor Sleep	0.09	0.267
Normal Operation	0.97	2.91
Active (1 Finger)	12.65	37.2
Active (5 Fingers)	13.10	38.8
Active (10 Fingers)	13.63	40.4

Timing characteristics

I²C

Table 12. I²C parameters

Devenator	Symbol	Standard-Mode			Fast-Mode			
Parameter	Symbol	Minimum	Typical	Maximum	Minimum	Typical	Maximum	Unit
	f _{SCL}	—	_	100	—	—	400	kHz
Stretch time.	t _{CSTR}	—	25	25	—	25	25	μs
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{hd;sta}	4.0	_	_	0.6	_	_	μs
LOW period of the SCL clock.	t _{LOW}	4.7	—	—	1.3	—	—	μs
HIGH period of the SCL clock.	t _{HIGH}	4.0	_	_	0.6	_	_	μs
Set-up time for a repeated START condition.	t _{su;sta}	4.7	_	_	0.6	_	_	μs
Data hold time.	t _{HD;DAT}	0	—	3.45	0	—	0.9	μs
Data out valid time.	t _{VALID;DATO}	—	—	3.45	—	—	0.9	μs
Data set-up time.	t _{SU;DAT}	250	—	—	100	—	—	ns
Rise time of both SDA and SCL signals.	t _r	_	—	1000	20 + 0.1C _b	—	300	ns
Fall time of both SDA and SCL signals.	t _f	_	_	300	20 + 0.1C _b	_	300	ns
Set-up time for STOP condition.	t _{su:sto}	4.0	_	_	0.6	_	_	μs
Bus free time between a STOP and START condition.	t _{BUF}	4.7	_	_	1.3	_	_	μs
Capacitive load for each bus line.	Cb	_	_	400	_	_	400	pF

Power-on sequence and initialization

VDDBUS supplies the communication I/O and GPIOs. VDDH supplies analog power. VDD18 and VDD12 supply the digital IC core power. The S7880 touch controller "Power OK" circuitry monitors the VDD18, VDD12, and VDDBUS supply inputs. In order for the POR cycle to commence, the power supplies must start at a lower voltage than the power OK falling threshold and rise monotonically and settle within their tolerances in 25 ms. All three power inputs must be valid before a power on reset condition begins (Figure 9).

The XRESB, external hardware reset input can also be used to force the chip into a reset condition, when the power supply cannot be shut off completely. The VDDBUS power input is provided so that the I²C bus can remain functional while other power is removed from the touch controller. In this case the VDDBUS power will remain on and other devices that share the

I²C can continue to function. Pull-up resistors on the

I²C bus should be connected to VDDBUS. The SCL and SDA pins are true open-drain I/O pins and will not allow current leakage into the touch controller when the other power rails are switched off. VDDBUS also allows voltage translation with systems using from 1.8V to 3.3V logic. VDDBUS, VDDH, VDD18, and VDD12 can be powered up in any order. The power state of VDDH is monitored by firmware. The touch controller ATTN interrupt output, typically GPIO PA5, has ESD protection devices that may allow current to leak from the pull-up resistor into the VDDBUS supply, when power is removed. For this reason it is important to connect pull-up resistors to the VDDBUS supply (and not other supplies). Another reason is that if VDDBUS and VDD18 are combined, the leakage current from the pull-up resistor may prevent the VDD18 from decaying fast after power is removed. And much time will be required for the voltage to decay low enough for the POR cycle to function normally.

When powering the S7880 touch controller up or down, system design should ensure that the voltages on the signal pins in the Absolute Maximum Ratings table are observed. Failure to follow this requirement may lead to unreliable operation of, or damage to, the device. Open-drain signals; for example, SCL/PA9 and SDA/ PA8, are high-impedance at power-up and will transition high when the external pull-ups power (VDDBUS) is applied.

During the initialization phase $(T_{powerup})$, the touch controller reset and firmware initialization routines may take up to 45 ms. During this time, the ATTN signal will be de-asserted and no host commands will be recognized. After the touch controller is fully initialized, the ATTN pin will be asserted and host communication is enabled.

Figure 9. Power supply power-on sequence and start firmware execution

Copyright © 2016 Synaptics Incorporated. All Rights Reserved. Synaptics Confidential. Disclosed Only Under NDA.

Power supply sequencing

The power supplies must start at below the power OK falling threshold and rise monotonically to their specified tolerance with 25 ms. Thereafter they must stay within the permitted tolerance. During power up when all power inputs are valid, I/O pin PA3 is driven high by the touch controller and will remain high until the hardware power on reset timer expires (minimum of 5 ms, maximum of 21 ms) at which time pin PA3 will pulse low. In systems where pin PA3 is used, the host should expect this power up pulse behavior. If this

behavior is not tolerable, other GPIO pins should be used instead.

Important: It is strongly recommended to power-up the touch subsystem last in a device. Doing so allow s the touch controller to measure its baseline with other subsystems (such as an LCD) powered on, enabling optimized performance.

Power Supply	Power OK Rising Threshold	Power OK Falling Threshold	Power Supply Minimum Voltage	Unit
VDD12	1.08	1.02	1.14	V
VDD18	1.62	1.53	1.71	V
VDDBUS	1.62	1.53	1.71	V

Table 13. Power OK characteristics

-reliminary

Power-on interface timing

Figure 10. Power-on interface timing diagram

Table 14.	Power-on sec	nuence and	external r	eset timina

Power Supply	Minimum	Maximum	Unit
T _{attn_en}	5	21	ms
T _{powerup}	—	45	ms
T _{bl_start} (bootloader start)	—	30	ms
T _{bl_active} (bootloader active)	_	15	ms
T _{reset} (XRESB pin)	100	_	ns

External reset timing

er. Preliminary

Package and ordering information

Package drawing

Figure 12. S7880 package drawing

Note: The exposed die attach pad should be connected to ground.

Dimensions

All measurements are in millimeters unless otherwise specified.

Table 15. S7880 dimensions

Aspect	Symbol	Common Dimensions				
Asheri	Symbol	Minimum	Typical	Maximum		
Total thickness	A	—	—	1.2		
Stand off	A1	0.05	_	0.15		
Mold thickness	A2	0.95	1	1.05		
Lead width (plating)	b	0.17	0.22	0.27		
Lead width	b1	0.17	0.2	0.23		
L/F thickness (plating)	с	0.09	_	0.2		
L/F thickness	c1	0.09	_	0.16		
Body size	D	_	12 BSC	—		
Dody Size	D1	_	10 BSC	_		
Lead pitch	е	lb-	0.5 BSC	_		
Body Size	E	11	12 BSC	_		
	E1	-9/1	10 BSC			
_	L	0.45	0.60	0.75		
Footprint	L1	—	1 REF			
_	R1	0.08	_			
_	R2	0.08	_	0.2		
_	S	0.2	_			
_	θ	0°	3.5°	7°		
_	θ1	0°	—	—		
_	θ2	11°	12°	13°		
_	θ 3	11°	12°	13°		
ED Size	М	5.85	_	6.05		
	N	5.85		6.05		

Package marking

Figure 13. S7880 package marking

Ordering information

Refer to the *Touch Controller Ordering Guide* (PN: 511-000481-01) for ordering information.

Preliminan

Shipment packaging

The S7880 can be shipped either in trays or in tape-and-reel packaging.

For information about tape-and-reel packaging, see the *ASIC Tape-and-Reel Package Specification* (PN: 528-000187-01).

For tray packaging specifics, please contact Synaptics.

Environmental and regulatory compliance

This Synaptics product is built in compliance with the RoHS directive and the Synaptics Quality Specification: Environmental Conservation Program (PN: 526-000223-01). This Synaptics product is also Halogen-Free (HF) compliant.

Reference documents

- ASIC Tape-and-Reel Package Specification (PN: 528-000187-01)
- ClearPad Sensor Design Guidelines (PN: 511-000384-01)
- Synaptics Quality Specification: Environmental Conservation Program (PN: 526-000223-01)
- Synaptics RMI4 Specification (PN: 511-000405-01)
- Touch Controller Ordering Guide (PN: 511-000481-01)

Revision history

Table 16. Revision history

Revision	Description
1	Initial preliminary release.

Copyright

Copyright © 2016 Synaptics Incorporated. All Rights Reserved.

Trademarks

Synaptics, the Synaptics logo, ClearPad, Design Studio, and SignalClarity, are trademarks or registered trademarks of Synaptics Incorporated or its affiliates in the United States and/or other countries.

All other trademarks are the properties of their respective owners.

Notice

This document contains information that is proprietary to Synaptics Incorporated ("Synaptics"). The holder of this document shall treat all information contained herein as confidential, shall use the information only for its intended purpose, and shall not duplicate, disclose, or disseminate any of this information in any manner unless Synaptics has provided express, written permission otherwise.

Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics may, from time to time, and at its sole option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED AS-IS" AND SYNAPTICS HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS' TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S. DOLLARS.

Contact us

To locate the Synaptics office nearest you, visit our website at www.synaptics.com.

